630 Notizen

Isoflavonoid Phytoalexins from Leaflets of Dalbergia sericea

John L. Ingham

Phytochemical Unit, Department of Botany, University of Reading, Reading RG6 2AS, England

Z. Naturforsch. **34 c**, 630 – 631 (1979); received April 23, 1979

Leguminosae, Dalbergia, Isoflavans, Pterocarpans, Phytoalexins

The fungus-inoculated leaflets of *Dalbergia sericea* produce several isoflavonoid phytoalexins including the known pterocarpans, medicarpin and maackiain, and the isoflavan, vestitol. A fourth, previously undescribed, phytoalexin has been identified as 7-methoxy-2',4'-dihydroxyisoflavan (neovestitol) by comparison with synthetic material.

Simple 7,2',4'-oxygenated isoflavans accumulate in the fungus-inoculated tissues of many papilionate legumes where they appear to function as defensive compounds (phytoalexins) [1, 2]. Vestitol (7,2'-dihydroxy-4'-methoxyisoflavan, 1) is the most common isoflavan phytoalexin [3] and occurs widely in the Papilionoideae subfamily of the Leguminosae; in contrast, the related compound, isovestitol (7,4'-dihydroxy-2'-methoxyisoflavan, 2), the three possible monomethyl ethers of 1 and 2 (sativan, 3; isosativan, 4; and arvensan, 5) and demethylvestitol (7,2',4'-trihydroxyisoflavan, 6) have a more restricted distribution being found principally in temperate legume tribes such as the Loteae and Trifolieae [3-6]. It has recently been possible to investigate the phytoalexin response of several species belonging to Dalbergia (tribe Dalbergieae), a relatively large (approx. 100 species) tropical/subtropical genus of trees, shrubs and climbers. During the course of this work, it was found that the fungus (Helminthosporium carbonum)-inoculated leaflets of the Himalayan species, D. sericea, produced substantial quantities of 1 together with a previously undescribed isoflavan (7) for which the common name, neovestitol, is proposed. This paper describes the isolation, purification and identification of neovestitol as 7-methoxy-2',4'-dihy-

Extraction and TLC purification of fungus-induced leaf diffusates (see *Experimental* and [7, 8]) gave the known phytoalexins, vestitol (1), medicarpin (3-hydroxy-9-methoxypterocarpan, 8) and maackiain (3-hydroxy-8,9-methylenedioxypterocarpan, 9); all

Reprint requests to Dr. J. L. Ingham. 0341-0382/79/0700-0630 \$ 01.00/0

HO
$$\frac{1}{2}$$
 $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{0}$ $\frac{1}{8}$ $\frac{1}{6}$ $\frac{1}{1}$ \frac

three compounds were identified by comparison (UV, MS, Co-TLC) with authentic material [4, 5, 9-11]. In addition to compounds 1, 8 and 9, the diffusates also contained large amounts (see below) of a fourth component (7) which proved to be highly fungitoxic (minimum detection limit, < 5 µg) when subjected to a TLC bioassay against spore germination of Cladosporium herbarum [12]. This compound which reacted immediately when TLC plates were sprayed with either diazotised p-nitroaniline (orange/ yellow) or Gibbs reagent/aqueous Na₂CO₃ (purple/ blue) - had M+ 272 (cf. 1 and 2 [4, 10]) and could be methylated (CH₂N₂; 5 min; CH₂Cl₂/MeOH, 1:1) [13] to yield a product indistinguishable (UV, MS, Co-TLC) from 7,2',4'-trimethoxyisoflavan (10) [4]. Partial diazomethane methylation (30 sec; CH₂Cl₂/MeOH, 1:4) afforded a mixture of 10 and isosativan (4). Together with the prominent MS fragments at m/e 137, 136 and 123 [14, 15] (see Experimental), the above data indicate that 5 is a simple isoflavan substituted with one OCH₃ (A-ring; C-7) and two OH (B-ring; C-2'/4') groups. This was confirmed by catalytic hydrogenation of synthetic 7methoxy-2',4'-dibenzyloxyisoflavone [16] to give (\pm) -7-methoxy-2',4'-dihydroxyisoflavan (neovestitol) identical (UV, MS, Co-TLC) with the natural product. Dalbergia sericea is currently the only known plant source of neovestitol; the other Dalbergia species examined in these laboratories (e. g. D. latifolia, D. retusa and D. sissoo) characteristically produce 1 and 8, and occasionally 9.

Neovestitol appears to be the major isoflavonoid phytoalexin produced by leaflets of *D. sericea* attaining a concentration (based on $\log \varepsilon = 3.62$ at 285 nm for 1 [9]) of between 50 and 64 µg/ml diffusate within 48 h of inoculation. Although vestitol also accumulates in significant quantities (44–53 µg/ml), neither medicarpin (*ca.* 1 µg/ml) nor maackiain (<0.5 µg/ml) occur in more than trace amounts.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Notizen 631

Leaf tissues beneath the inoculum droplets contain 1 and 7 at concentrations of ca. 450 and 900 μ g/g fresh wt. respectively. Compounds 1 and 7–9 were either absent from control samples or were present at levels insufficient for satisfactory UV measurement.

Experimental

Unless otherwise stated, MS/UV analyses and all chromatographic separations were carried out as previously described [10, 17, 18].

Induction, isolation and purification of compounds 1 and 7-9. Seeds of Dalbergia sericea G. Don (supplied by the Forest Research Institute, Dehra Dun, India) were germinated (70°; John Innes No. 1 compost) and the resulting plants grown (75°; 7000 lx; 16 h daylength) for approx. 6 months prior to inoculation of detached leaflets with spore suspensions of Helminthosporium carbonum [7, 8]. Control leaflets were treated with droplets of de-ionised H₂O. Si gel TLC (CHCl₃: MeOH, 20:1) of 48 h diffusate extracts (EtOAc) gave 8+9 (R_F 0.69), 1 (R_F 0.32) and 7 $(R_F 0.20)$. After elution (EtOH), compounds 8 and 9 were separated by TLC in n-pentane: Et₂O: HOAc $(75:25:3,\times3)$ [19]; this solvent system was also used to purify 1 and 7. Inoculated leaf tissues were excised and extracted (EtOH) as outlined elsewhere [4]. Si gel PLC (CHCl₃: MeOH, 10: 1, layer thickness, 0.5 mm) gave 1 and 7 at R_F 0.45 and 0.38 respectively. Both compounds were eluted and further purified as described above. Pterocarpans 8 and 9 could not be isolated from tissue extracts. There was no evidence to suggest that D. sericea produced other isoflavonoid phytoalexins such as isovestitol (2), isosativan (4) and arvensan (5).

7-Methoxy-2',4'-dihydroxyisoflavan (7) (neovestitol). Diazotised p-nitroaniline, orange/yellow; Gibbs

- [1] J. L. Ingham, Proc. Int. Legume Conf. Kew 1978 in
- press.

 [2] J. B. Harborne and J. L. Ingham, Biochemical Aspects of Plant and Animal Coevolution (ed. J. B. Harborne), p. 343, Academic Press, London and New York 1978.

[3] J. L. Ingham, unpublished data.

- [4] J. L. Ingham, Phytochemistry 16, 1279 (1977).
- [5] J. L. Ingham, Biochem. Syst. Ecol. 6, 217 (1978).
 [6] J. L. Ingham, Biochem. Syst. Ecol. 7, 29 (1979).
- [7] V. J. Higgins and R. L. Millar, Phytopathology 58, 1377 (1968).
- [8] J. L. Ingham and R. L. Millar, Nature 242, 125 (1973).
- [9] M. R. Bonde, R. L. Millar, and J. L. Ingham, Phytochemistry 12, 2957 (1973).

[10] J. L. Ingham, Phytochemistry 15, 1489 (1976).

[11] V. J. Higgins and D. G. Smith, Phytopathology **62**, 235 (1972).

reagent, purple/blue. λ max (nm) EtOH 212 (100%), 227 sh (65%), 281 sh (30%), 284 (31%), 289 (28%); EtOH + NaOH 215 (100%), 246 sh (8%), 286 sh (6%), 291 (7%), 302 sh (5%). MS (rel. int.) 273 (2), 272 (M⁺; 17), 150 (6), 149 (12), 148 (9), 138 (10), 137 (100), 136 (34), 135 (14), 123 (11), 121 (18), 109 (6), 108 (5), 107 (17). 4'-O-methyl ether (4) (CH_2N_2) $(R_F 0.05,$ CHCl₃: CCl₄, 3:1) Diazotised p-nitroaniline, yellow; Gibbs reagent, deep blue. UV (EtOH and EtOH + NaOH) as lit. [19]. MS (rel. int.) 287 (8), 286 (M⁺; 39), 151 (10), 150 (100), 149 (33), 148 (14), 138 (11), 137 (78), 121 (17). Dimethyl ether (10) $(R_F 0.55,$ CHCl₃: CCl₄, 3:1) UV (EtOH) and MS as lit. [4, 8]. Diacetate (Py-Ac₂O) (R_F 0.64, CHCl₃) λ max (nm) EtOH 212 (100%), 228 sh (72%), 275 sh (14%), 280 (17%), 283 (18%), 289 (15%). MS (rel. int.) 356 (M⁺; ·3), 315 (2), 314 (10), 273 (2), 272 (14), other fragments as given for 7.

Synthesis of 7.7-Methoxy-2',4'-dibenzyloxyisoflavone was prepared as previously described [16]. This isoflavone (2 mg), HOAc (2 ml) and Pd/C (10%; 10 mg) were shaken with $\rm H_2$ for ca. 6 h (room temp., 1 atm.). Work up and Si gel TLC (CHCl₃: MeOH, 10:1) gave 7-methoxy-2',4'-dihydroxyisoflavan (ca. 1.2 mg). UV and MS as reported for the natural product. The synthetic and Dalbergia-derived isoflavans were inseparable when co-chromatographed (Si gel TLC) in CHCl₃: MeOH, 20:1 (R_F 0.20), n-pentane: Et₂O: HOAc, 75:25:3 (R_F 0.23), Et₂O: n-hexane (R_F 0.55) and C_6H_6 : MeOH, 9:1 (R_F 0.36).

Acknowledgements

The author thanks R. W. Butters (Tate and Lyle Ltd.) for MS analyses, P. M. Dewick (University of Nottingham) for a sample of synthetic 7 and the Science Research Council for financial support.

[12] A. L. Homans and A. Fuchs, J. Chromatography 51, 327 (1970).

[13] L. E. Powell, Plant Physiol. 39, 836 (1964).

- [14] A. Pelter and P. I. Amenechi, J. Chem. Soc., C 887 (1969).
- [15] Q. N. Porter and J. Baldas, Mass Spectrometry of Heterocyclic Compounds, p. 87, Wiley-Interscience, London and New York 1971.
- [16] J. L. Ingham and P. M. Dewick, Phytochemistry 17, 535 (1978).
- [17] J. L. Ingham and P. M. Dewick, Z. Naturforsch. 32 c, 446 (1977).
- [18] J. L. Ingham, Z. Naturforsch. 31 c, 504 (1976).
- [19] J. L. Ingham, Z. Naturforsch. 31 c, 331 (1976).